(17steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Redistributing the power of a composite of two numbers in a factorization down to the factors produces another factorization of the same number, zeroing the power of the composite and leaving the powers of larger factors untouched.

At: split factor2 char


  k:{2...}, g:({2..k}), x,y:{2..k}.
  xy<k
  
  x<y
  
  {2..k}(g) = {2..k}(split_factor2(gxy))
  & split_factor2(gxy)(xy) = 0
  & (u:{2..k}. xy<u  split_factor2(gxy)(u) = g(u))


By: {After letting h = split_factor2(gxy {2..k} and elaborating the four
{cases from its definition, the only work is showing that it factors the same
{number as g
{}
SideProof


Generated subgoal:

1 1. k : {2...}
2. g : {2..k}
3. x : {2..k}
4. y : {2..k}
5. xy<k
6. x<y
7. x<xy
8. y<xy
9. h : {2..k}
10. h = split_factor2(gxy)
11. h(xy) = 0  
12. h(x) = g(x)+g(xy 
13. h(y) = g(y)+g(xy 
14. u:{2..k}. u = x  u = y  u = xy  h(u) = g(u)
  {2..k}(g) = {2..k}(h)

11 steps

About:
intnatural_numberaddmultiplyless_thanapplyfunctionequalimplies
andallpfdisp_conclred_hyp
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(17steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc