By: |
THEN Analyze-1 ... THEN ExistHD Hyp:-1 THEN Inst: Hyp:3 Using:[i | j] ...a |
1 |
7. j : {2..z} 8. z = ij 9. h:({2..k}). 9. {2..k}(g) = {2..k}(h) & h(ij) = 0 & (u:{2..k}. ij<u h(u) = g(u)) g':({2..k}). {2..k}(g) = {2..k}(g') & g'(z) = 0 & (u:{2..k}. z<u g'(u) = g(u)) | 1 step |
About: