Rank | Theorem | Name |
12 | Thm* k:{2...}, g:({2..k }  ), z:{2..k }.
Thm* prime(z)
Thm* 
Thm* ( g':({2..k }  ).
Thm* ( {2..k }(g) =  {2..k }(g')
Thm* (& g'(z) = 0
Thm* (& ( u:{2..k }. z<u  g'(u) = g(u))) | [can_reduce_composite_factor2] |
cites the following: |
7 | Thm* k:{2...}, g:({2..k }  ), x,y:{2..k }.
Thm* x y<k
Thm* 
Thm* ( h:({2..k }  ).
Thm* ( {2..k }(g) =  {2..k }(h)
Thm* (& h(x y) = 0
Thm* (& ( u:{2..k }. x y<u  h(u) = g(u))) | [can_reduce_composite_factor] |
11 | Thm* x: . prime(x)  x<2 ( i,j:{2..x }. x = i j) | [nonprime_nat] |