(2steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: remove prime factor

  a:b:f:({a..b}), p:.
  is_prime_factorization(abf)
  
  prime(p)
  
  p | {a..b}(f {a..b}(f) = p{a..b}(reduce_factorization(fp))


By: SimilarTo:
Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p p | {a..b}(f p  {a..b} & 0<f(p)
THEN
Analyze-1


Generated subgoal:

1 1. a : 
2. b : 
3. f : {a..b}
4. p : 
5. is_prime_factorization(abf)
6. prime(p)
7. p | {a..b}(f)
8. p  {a..b}
9. 0<f(p)
  {a..b}(f) = p{a..b}(reduce_factorization(fp))

1 step

About:
intnatural_numbermultiplyless_thanapplyfunctionequalmemberimpliesall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(2steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc