Definitions FTA DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in FTA

Def  {T}[guard]core
Def  f is a factorization of k[prime_factorization_of]
Def  Prime[prime_nats]SimpleMulFacts
Def  [nat]int 1
Def  {i...}[int_upper]int 1
Def  is_prime_factorization(abf)[is_prime_factorization]
Def  {i..j}[int_seg]int 1
Def  i  j < k[lelt]int 1
Def  AB[le]core
Def  Prop[prop]core
Def  a  b[nequal]core
Def  prime(a)[prime]num thy 1
Def  A[not]core
Def  trivial_factorization(z)[trivial_factorization]
Def  reduce_factorization(fj)[reduce_factorization]
Def  [nat_plus]int 1
Def  P  Q[iff]core
Def  x:AB(x)[exists]core
Def  SqStable(P)[sq_stable]core
Def  a ~ b[assoced]num thy 1
Def  b | a[divides]num thy 1
Def  P  Q[or]core
Def  A & B[cand]core
Def  split_factor2(gxy)[split_factor2]
Def  split_factor1(gx)[split_factor1]
Def  [bool]bool 1
Def  b[assert]bool 1
Def  complete_intseg_mset(abf)[complete_intseg_mset]
Def  !x:AP(x)[exists_unique]LogicSupplement
Def  prime_mset_complete(f)[prime_mset_complete]
Def  is_prime(x)[prime_decider]SimpleMulFacts
Def  if b t else f fi[ifthenelse]bool 1
Def  {a..b}(f)[eval_factorization]
Def  Iter(f;ui:{a..b}. e(i)[iter_via_intseg]IteratedBinops
Def  P  Q[implies]core
Def  x:AB(x)[all]core
Def  P & Q[and]core
Def  i=j[eq_int]bool 1
Def  i  j < k[lelt_int]
Def  ij[le_int]bool 1
Def  i<j[lt_int]bool 1
Def  pq[band]bool 1
Def  P  Q[rev_implies]core
Def  T[squash]core
Def  x is the u:AP(u)[is_the]LogicSupplement
Def  b[bnot]bool 1

About:
productproductboolbfalsebtrueifthenelseassertunitintnatural_number
addsubtractmultiplyint_eqlessless_thanunion
decidesetlambdaapplyfunction
ycombuniverseequalpropimpliesandorfalsetrueall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions FTA DiscrMathExt Doc