(4steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
There is at most one prime factorization of any natural number.

At: prime factorization mset unique


  n:f,g:(Prime).
  f is a factorization of n  g is a factorization of n  f = g


By: SimilarTo
Thm*  n:f,g:(Prime).
Thm*  f is a factorization of n
Thm*  
Thm*  g is a factorization of n
Thm*  
Thm*  (x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x))
Thm*  
Thm*  f = g
THEN
BackThru: Hyp:-1


Generated subgoal:

1 1. n : 
2. f : Prime
3. g : Prime
4. f is a factorization of n
5. g is a factorization of n
6. (x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x))
6. 
6. f = g
7. x : {2..(n+1)}
  prime_mset_complete(f)(x) = prime_mset_complete(g)(x)

3 steps

About:
intnatural_numberaddapplyfunctionequalimpliesall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(4steps total) PrintForm Definitions Lemmas FTA Sections DiscrMathExt Doc