Rank | Theorem | Name |
15 | Thm* prime(X) Thm* Thm* (X1:. X1<X prime(X1) (a,b:. X1 | ab X1 | a X1 | b)) Thm* Thm* (W:. 0<W W<X (t:. X | tW X | t)) | [nat_prime_div_each_factorLEMMA] |
cites the following: | ||
14 | [prime_or_smaller_prime_factor] | |
0 | [disjunct_elim] | |
11 | [natprime_nondivs] | |
2 | [divides_def_on_nat] | |
4 | [pos_mul_arg_boundsNat] | |
2 | [factor_smaller] |