Rank | Theorem | Name |
15 | Thm* X: .
Thm* prime(X)
Thm* 
Thm* ( X1: . X1<X  prime(X1)  ( a,b: . X1 | a b  X1 | a X1 | b))
Thm* 
Thm* ( W: . 0<W  W<X  ( t: . X | t W  X | t)) | [nat_prime_div_each_factorLEMMA] |
cites the following: |
14 | Thm* x:{2...}. p:{2...}. p x & prime(p) & p | x | [prime_or_smaller_prime_factor] |
0 | Thm* P Q  P  Q | [disjunct_elim] |
11 | Thm* x: . prime(x)  ( i:{2..x }. i | x) | [natprime_nondivs] |
2 | Thm* a,b: . a | b  ( c: . b = a c) | [divides_def_on_nat] |
4 | Thm* a,b: . 0<a b  0<a & 0<b | [pos_mul_arg_boundsNat] |
2 | Thm* i:{2...}, j:{1...}. j<i j | [factor_smaller] |