FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
15Thm*  X:
Thm*  prime(X)
Thm*  
Thm*  (X1:X1<X  prime(X1 (a,b:X1 | ab  X1 | a  X1 | b))
Thm*  
Thm*  (W:. 0<W  W<X  (t:X | tW  X | t))
[nat_prime_div_each_factorLEMMA]
cites the following:
14Thm*  x:{2...}. p:{2...}. px & prime(p) & p | x[prime_or_smaller_prime_factor]
0Thm*  P  Q  P  Q[disjunct_elim]
11Thm*  x:. prime(x (i:{2..x}. i | x)[natprime_nondivs]
2Thm*  a,b:a | b  (c:b = ac)[divides_def_on_nat]
4Thm*  a,b:. 0<ab  0<a & 0<b[pos_mul_arg_boundsNat]
2Thm*  i:{2...}, j:{1...}. j<ij[factor_smaller]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA Sections DiscrMathExt Doc