Rank | Theorem | Name |
17 | Thm* p: .
Thm* prime(p)
Thm* 
Thm* ( a,b: , e:({a..b }  ).
Thm* (a<b  p | ( i:{a..b }. e(i))  ( i:{a..b }. p | e(i))) | [prime_divs_mul_via_intseg] |
cites the following: |
1 | Thm* a,b: , e:({a..b }  ). a+1 = b  ( i:{a..b }. e(i)) = e(a) | [mul_via_intseg_singleton] |
2 | Thm* a,b: , e:({a..b }  ).
Thm* a<b  ( i:{a..b }. e(i)) = ( i:{a..b-1 }. e(i)) e(b-1) | [mul_via_intseg_split_last] |
16 | Thm* X: . prime(X)  ( a,b: . X | a b  X | a X | b) | [nat_prime_div_each_factor] |