Rank | Theorem | Name |
15 | Thm* n:{1...}. f:(Prime   ). f is a factorization of n | [prime_factorization_exists2] |
cites the following: |
14 | Thm* n:{1...}.
Thm* h:({2..(n+1) }  ).
Thm* n =  {2..n+1 }(h) & is_prime_factorization(2; (n+1); h) | [prime_factorization_exists] |
0 | Thm* a,b: , f:({a..b }  ), x: .
Thm* a x < b  complete_intseg_mset(a; b; f)(x) = 0 | [complete_intseg_mset_ismin] |
0 | Thm* f:(Prime   ), x:Prime . prime_mset_complete(f)(x) = f(x) | [prime_mset_complete_isext] |
0 | Thm* a,b: , f:({a..b }  ), x:{a..b }. complete_intseg_mset(a; b; f)(x) = f(x) | [complete_intseg_mset_isext] |
0 | Thm* f:(Prime   ), x: . prime(x)  prime_mset_complete(f)(x) = 0 | [prime_mset_complete_ismin] |