FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
15Thm*  n:{1...}. f:(Prime). f is a factorization of n[prime_factorization_exists2]
cites the following:
14Thm*  n:{1...}. 
Thm*  h:({2..(n+1)}). 
Thm*  n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)
[prime_factorization_exists]
0Thm*  a,b:f:({a..b}), x:.
Thm*  a  x < b  complete_intseg_mset(abf)(x) = 0
[complete_intseg_mset_ismin]
0Thm*  f:(Prime), x:Prime. prime_mset_complete(f)(x) = f(x)[prime_mset_complete_isext]
0Thm*  a,b:f:({a..b}), x:{a..b}. complete_intseg_mset(abf)(x) = f(x)[complete_intseg_mset_isext]
0Thm*  f:(Prime), x:prime(x prime_mset_complete(f)(x) = 0[prime_mset_complete_ismin]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA Sections DiscrMathExt Doc