FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Theorem
Name
Thm*
a
,
b
:
,
f
:({
a
..
b
}
),
j
:{
a
..
b
}.
Thm*
0<
f
(
j
)
Thm*
Thm*
is_prime_factorization(
a
;
b
;
f
)
Thm*
Thm*
is_prime_factorization(
a
;
b
; reduce_factorization(
f
;
j
))
[reduce_fac_pres_isprimefac]
cites the following:
Thm*
a
,
b
:
,
f
:({
a
..
b
}
),
j
:{
a
..
b
}.
Thm*
0<
f
(
j
)
(
i
:{
a
..
b
}. reduce_factorization(
f
;
j
)(
i
)
f
(
i
))
[reduce_factorization_bound]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA
Sections
DiscrMathExt
Doc