| Rank | Theorem | Name | 
| 6 | Thm*   k:{2...}, g:({2..k }   ), x:{2..k }.
 Thm*  x x<k
 Thm*    
 Thm*    {2..k }(g) =   {2..k }(split_factor1(g; x))
 Thm*  & split_factor1(g; x)(x x) = 0
 Thm*  & ( u:{2..k }. x x<u    split_factor1(g; x)(u) = g(u)) | [split_factor1_char] | 
| cites the following: | 
| 2 | Thm*   i:{2...}, j:{1...}. j<i j | [factor_smaller] | 
| 5 | Thm*   a,c,b: , f:({a..b }   ).
 Thm*  a c    c<b      {a..b }(f) =   {a..c }(f) c f(c)   {c+1..b }(f) | [eval_factorization_split_pluck] | 
| 4 | Thm*   i: , x,y: . i x i y = i (x+y) | [sum_exponent] | 
| 4 | Thm*   a,b,c: . (a b) c = a c b c | [exp_reduce1] | 
| 0 | Thm*   x: . x 0 = 1 | [exponent_zero] |