Rank | Theorem | Name |
6 | Thm* xx<k Thm* Thm* {2..k}(g) = {2..k}(split_factor1(g; x)) Thm* & split_factor1(g; x)(xx) = 0 Thm* & (u:{2..k}. xx<u split_factor1(g; x)(u) = g(u)) | [split_factor1_char] |
cites the following: | ||
2 | [factor_smaller] | |
5 | Thm* ac c<b {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f) | [eval_factorization_split_pluck] |
4 | [sum_exponent] | |
4 | [exp_reduce1] | |
0 | [exponent_zero] |