FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
6Thm*  k:{2...}, g:({2..k}), x:{2..k}.
Thm*  xx<k
Thm*  
Thm*  {2..k}(g) = {2..k}(split_factor1(gx))
Thm*  & split_factor1(gx)(xx) = 0
Thm*  & (u:{2..k}. xx<u  split_factor1(gx)(u) = g(u))
[split_factor1_char]
cites the following:
2Thm*  i:{2...}, j:{1...}. j<ij[factor_smaller]
5Thm*  a,c,b:f:({a..b}).
Thm*  ac  c<b  {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f)
[eval_factorization_split_pluck]
4Thm*  i:x,y:ixiy = i(x+y)[sum_exponent]
4Thm*  a,b,c:. (ab)c = acbc[exp_reduce1]
0Thm*  x:x0 = 1[exponent_zero]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
FTA Sections DiscrMathExt Doc