| Who Cites hsimp rec rel? |
|
hsimp_rec_rel | Def simp_rec_rel
Def == fun:  'a. x:'a. f:'a 'a. n: .  (fun(0) = x
Def == & ( m: . m<n  fun(m+1) = f(fun(m)))) |
| | Thm* 'a:S. simp_rec_rel ((hnum  'a)  'a  ('a  'a)  hnum  hbool) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
prop_to_bool | Def  P == InjCase(lem(P) ; true ; false ) |
| | Thm* P:Prop. ( P)  |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |