is mentioned by
Thm* nn' Thm* Thm* (h:({n+1...n'}Peg). Thm* (s is a Hanoi(n disk) seq on a..z Thm* ( Thm* ((s(?) {to n} h {to n'}) is a Hanoi(n' disk) seq on a..z) | [hanoi_seq_deepen_seq] |
Thm* nn' Thm* Thm* (h:({n+1...n'}Peg), i:{1...n'}. Thm* (in (x:{a...z}. (s(?) {to n} h {to n'})(x,i) = s(x,i))) | [hanoi_seq_deepen_loweq] |
Thm* nn' Thm* Thm* (h:({n+1...n'}Peg), i:{1...n'}. Thm* (n<i (x:{a...z}. (s(?) {to n} h {to n'})(x,i) = h(i))) | [hanoi_seq_deepen_higheq] |
Def == <s1(?) {to n-1} f {to n},s2(?) {to n-1} g {to n}> | [hanoi_general_exists_lemma2PROG] |
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html