Introduction | Introductory Remarks | |
COM | hanoi_basic_problem
| The Towers of Hanoi - formulating the problem ... |
COM | hanoi_basic_solution
| The Towers of Hanoi - the standard recursive solution ... |
COM | hanoi_basic_solution_cont
| Standard Solution made Explicit ... |
COM | hanoi_oddrec_solution
| A Non-standard Recursive Solution ... |
COM | hanoi_std_optimal
| Standard Solution is Optimal ... |
COM | hanoi_std_simplerdata
| Deriving Simpler Output Data ... |
COM | hanoi_std_extraction
| Automatic Extraction of a Solution ... |
def | hanoi_PEG
|
(the three pegs used in |
def | eq_hanoi_PEG
|
![]() ![]() ![]() ![]() |
THM | hanoi_pegseq_analemma
|
Given a sequence of pegs, perhaps with repititions, that starts with one and ends with another, there is a maximal prefix sequence every entry of which is the start peg, and there is a maximal suffix sequence every entry of which is the ending peg.
![]() p ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() (f(a) = p & f(z) = q ( ![]() ![]() (( ![]() ((( ![]() ![]() ![]() ![]() |
def | hanoi_otherpeg
|
(given distinct |
THM | hanoi_otherpeg_only
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_otherpeg_sym
|
![]() ![]() ![]() ![]() |
THM | hanoi_otherpeg_diff1
|
![]() ![]() ![]() ![]() ![]() |
THM | hanoi_otherpeg_diff2
|
![]() ![]() ![]() ![]() ![]() |
THM | hanoi_otherpeg_diff3
|
![]() ![]() ![]() ![]() ![]() |
THM | hanoi_otherpeg_diff4
|
![]() ![]() ![]() ![]() ![]() |
def | hanoi_peg_perm
|
(permute the pegs, mapping ![]() ![]() ![]() ![]() |
THM | hanoi_peg_perm_is_inj
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_peg_perm_comp1
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_peg_perm_comp2
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
def | hanoi_extend
|
(extending a stacking situation to larger disks by explicit stipulation of location for each new disk)
![]() ![]() ![]() ![]() |
THM | hanoi_extend_loweq
|
![]() ![]() ![]() ![]() ![]() n ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_extend_higheq
|
![]() ![]() ![]() ![]() ![]() n ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() ![]() |
def | hanoi_step_at
|
Characterization of legitimate moves in the Towers of Hanoi.
Stacking situations == ( ![]() ![]() ![]() ![]() ![]() == & ( ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_step_at_same
|
Moving one disk leaves the others in place.
![]() ![]() ![]() ![]() Moving disk k of n takes f to g ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_step_at_change2
|
Moving one disk changes its peg.
![]() ![]() ![]() ![]() Moving disk k of n takes f to g ![]() ![]() ![]() |
THM | hanoi_step_at_otherpeg
|
Moving one disk leaves the smaller disks in place.
![]() ![]() ![]() ![]() Moving disk k of n takes f to g ![]() ![]() f = ( ![]() ![]() ![]() ![]() |
THM | hanoi_step_at_unique
|
Moving one disk moves only that disk.
![]() ![]() ![]() ![]() Moving disk k of n takes f to g ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_step_at_change
|
If moving some disk converts ![]() ![]() ![]() ![]() ( ![]() ![]() ![]() f(j) ![]() ![]() ![]() |
THM | hanoi_step_at_sym
|
Disk moves can be reversed.
![]() ![]() ![]() ![]() Moving disk k of n takes f to g ![]() ![]() |
THM | hanoi_step_at_diff
|
Moving a disk changes its location.
![]() ![]() ![]() ![]() Moving disk k of n takes f to g ![]() ![]() ![]() |
def | hanoi_seq
|
(the criterion for a sequence of stacking situations being a legitimate Hanoi Towers sequence)
== ![]() == x+1 = x' ![]() ![]() ![]() |
THM | hanoi_seq_core
(Proof Gloss) |
If you take an interior subsequence of a proper stacking sequence and remove the disks above a certain size, you'll be left with a proper stacking sequence.
![]() ![]() ![]() ![]() ![]() ![]() ![]() s is a Hanoi(n disk) seq on a..z ![]() ![]() ( ![]() (( ![]() ( ![]() ![]() (s is a Hanoi(n' disk) seq on a'..z') |
THM | hanoi_seq_permutepegs
(Proof Gloss) |
Permuting the pegs throughout a Hanoi sequence results in a Hanoi sequence.
![]() ![]() ![]() ![]() ![]() ![]() ![]() s is a Hanoi(n disk) seq on a..z ![]() ![]() ( ![]() ![]() ![]() (Inj(Peg; Peg; f) ![]() ![]() ![]() |
def | hanoi_seq_deepen
|
(deepening a Hanoi sequence by adding larger disks to each of its individual stacking situations the same way)
![]() ![]() |
THM | hanoi_seq_deepen_higheq
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() n ![]() ![]() ![]() ( ![]() ![]() ![]() (n<i ![]() ![]() ![]() ![]() |
THM | hanoi_seq_deepen_loweq
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() n ![]() ![]() ![]() ( ![]() ![]() ![]() (i ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_seq_deepen_seq
(Proof Gloss) |
Deepening a Hanoi sequence results in a Hanoi sequence.
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() n ![]() ![]() ![]() ( ![]() ![]() ![]() (s is a Hanoi(n disk) seq on a..z ( ![]() ![]() ((s(?) {to n} ![]() |
THM | hanoi_seq_shift
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() s is a Hanoi(n disk) seq on a..z ![]() ![]() ( ![]() |
THM | hanoi_subseq
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() s is a Hanoi(n disk) seq on a..z ![]() ![]() ( ![]() |
THM | hanoi_seq_shallower
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() s is a Hanoi(n disk) seq on a..z ![]() ![]() ( ![]() ![]() ![]() |
def | hanoi_seq_join
|
(catenate sequence ![]() ![]() ![]() |
THM | hanoi_seq_join_part1
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_seq_join_part2
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | hanoi_seq_join_seq
(Proof Gloss) |
Joining two Hanoi sequences produces a Hanoi sequence if a single move takes the end of the first to the start of the second.
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ( ![]() ![]() ![]() s1 is a Hanoi(n disk) seq on a..m ![]() ![]() s2 is a Hanoi(n disk) seq on m+1..z ![]() ![]() (s1 @(m) s2) is a Hanoi(n disk) seq on a..z |
THM | hanoi_general_exists_lemma1
(Proof Gloss) |
From a sequence of moves for one fewer disks we can derive one having the largest disk on the same peg at the beginning and the end.
![]() ![]() ![]() ![]() ![]() f(n) = g(n) ![]() ![]() ( ![]() ![]() (( ![]() ![]() ![]() ![]() ![]() ((s is a Hanoi(n-1 disk) seq on a..z ((& s(a) = f ![]() ![]() ![]() ((& s(z) = g ![]() ![]() ![]() ( ![]() ![]() (( ![]() ![]() ![]() ![]() ![]() ((s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g)) |
THM | hanoi_general_exists_lemma2
(Proof Gloss) |
A lemma about composing stacking situations into a Hanoi seqence, given one already has appropriate Hanoi sequences for one fewer disks.
![]() ![]() ![]() ![]() ![]() ![]() f(n) ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (s1 is a Hanoi(n-1 disk) seq on a..m (& s1(a) = f ![]() ![]() ![]() (& s2 is a Hanoi(n-1 disk) seq on m+1..z (& s2(z) = g ![]() ![]() ![]() (& s1(m) = s2(m+1) (& ( ![]() ![]() ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g) |
def | hanoi_general_exists_lemma2PROG
|
== <s1(?) {to n-1} ![]() ![]() |
THM | hanoi_general_exists_lemma2PROGworks
|
![]() ![]() ![]() ![]() ![]() ![]() f(n) ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (s1 is a Hanoi(n-1 disk) seq on a..m (& s1(a) = f ![]() ![]() ![]() (& s2 is a Hanoi(n-1 disk) seq on m+1..z (& s2(z) = g ![]() ![]() ![]() (& s1(m) = s2(m+1) (& ( ![]() ![]() ![]() ( ![]() ![]() ((HanoiHelper(n; s1; f; s2; g)/r1,r2. (((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g)) |
THM | hanoi_sol2_via_permshift
(Proof Gloss) |
There is a Hanoi sequence taking all the disks from any peg to any other.
![]() ![]() p ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() (s is a Hanoi(n disk) seq on 1..z & s(1) = ( ![]() ![]() |
THM | hanoi_sol2_ala_general
(Proof Gloss) |
![]() ![]() p ![]() ![]() ![]() ( ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() |
def | hanoi_sol2_ala_generalPROG
|
== if n= ![]() ![]() ![]() == else HanoiSTD(n-1 disks; from: p; to: otherPeg(p; q); indexing from: a)/m,s1. == else HanoiSTD(n-1 disks; from: otherPeg(p; q); to: q; indexing from: m+1) == else /z,s2. <z,HanoiHelper(n; s1; ![]() ![]() (recursive) |
THM | hanoi_sol2_ala_generalPROGcomp
|
![]() ![]() ![]() p ![]() ![]() ![]() ( ![]() ![]() (HanoiSTD(n disks; from: p; to: q; indexing from: a) (= ((HanoiSTD(n-1 disks; from: p; to: otherPeg(p; q); indexing from: a)/m,s1. ((HanoiSTD(n-1 disks; from: otherPeg(p; q); to: q; indexing from: m+1)/z,s2. ((<z,HanoiHelper(n; s1; ![]() ![]() |
THM | hanoi_sol2_ala_generalPROGworks
|
![]() ![]() p ![]() ![]() ![]() ( ![]() ![]() (HanoiSTD(n disks; from: p; to: q; indexing from: a)/z,s. (s is a Hanoi(n disk) seq on a..z (& s(a) = ( ![]() ![]() ![]() ![]() (& s(z) = ( ![]() ![]() ![]() ![]() |
THM | hanoi_general_exists
(Proof Gloss) |
This generalizes of There is a Hanoi sequence of moves for any possible starting and ending situations. ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g |
THM | hanoi_sol2_via_general
|
Corollary of ![]() ![]() p ![]() ![]() ![]() ( ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() |
THM | hanoi_general_exists_lemma2PROG_endpoint
(Proof Gloss) |
The standard Hanoi Towers solution is a sequence whose length is ![]() ![]() p ![]() ![]() ![]() ( ![]() ![]() |
THM | hanoi_sol2_analemma
(Proof Gloss) |
A nontrivial Hanoi sequence solving ![]() ![]() ![]() p ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() ![]() (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() ( ![]() ![]() (( ![]() ((( ![]() ![]() ((& s(x) = ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ((& p ![]() ((& q ![]() |
THM | hanoi_sol2_lb
(Proof Gloss) |
The length of any Hanoi sequence solving ![]() ![]() p ![]() ![]() ![]() ( ![]() ![]() ![]() ![]() ![]() ![]() (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() ( ![]() ![]() ((2^n) ![]() |