n:
, p,q:Peg.
Thm* p q
Thm*
Thm* (a:
, z:{a...}, s:({a...z}
{1...n}
Peg).
Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (
i.q)
Thm* (
Thm* ((2^n)z-a+1)
(Note that a sequence with index range
Our proof will depend on the key lemma for analyzing Hanoi sequences:
(A) n:
, p,q:Peg.
Thm* p q
Thm*
Thm* (a:
, z:{a...}, s:({a...z}
{1...n}
Peg).
Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (
i.q)
Thm* (
Thm* ((x:{a...z-1}, y:{x+1...z}, p',q':Peg.
Thm* (((u:{a...x}. s(u,n) = p) & (
u:{y...z}. s(u,n) = q)
Thm* ((& s(x) = (i.p')
{1...n-1}
Peg & s(y) = (
i.q')
{1...n-1}
Peg
Thm* ((& p p'
Thm* ((& q q'))
which says that a solution (
The proof that
n1:
.
(B) n1<n
(B)
(B) (p,q:Peg.
(B) (p q
(B) (
(B) ((a:
, z:{a...}, s:({a...z}
{1...n1}
Peg).
(B) ((s is a Hanoi(n1 disk) seq on a..z & s(a) = (i.p) & s(z) = (
i.q)
(B) ((
(B) (((2^n1)z-a+1))
and assuming
p q
(C)
(D) i.p)
{1...n}
Peg
(E) i.q)
{1...n}
Peg
n 0
we aim to show
(*) (2^(n-1))
z-a+1
Continued at
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
![]() |