n:
, p,q:Peg.
Thm*  p 
 q
Thm*  ![]()
Thm*  (
a:
, z:{a...}, s:({a...z}![]()
{1...n}![]()
Peg).
Thm*  (s is a Hanoi(n disk) seq on a..z & s(a) = (
i.p) & s(z) = (
i.q)
Thm*  (![]()
Thm*  ((2^n)
z-a+1)
(Note that a sequence with index range 
Our proof will depend on the key lemma for analyzing Hanoi sequences:
(A) 
n:![]()
, p,q:Peg.
Thm*  p 
 q
Thm*  ![]()
Thm*  (
a:
, z:{a...}, s:({a...z}![]()
{1...n}![]()
Peg).
Thm*  (s is a Hanoi(n disk) seq on a..z & s(a) = (
i.p) & s(z) = (
i.q)
Thm*  (![]()
Thm*  ((
x:{a...z-1}, y:{x+1...z}, p',q':Peg.
Thm*  (((
u:{a...x}. s(u,n) = p) & (
u:{y...z}. s(u,n) = q)
Thm*  ((& s(x) = (
i.p') 
 {1...n-1}![]()
Peg & s(y) = (
i.q') 
 {1...n-1}![]()
Peg
Thm*  ((& p 
 p'
Thm*  ((& q 
 q'))
which says that a solution (
The proof that 
n1:
. 
(B) n1<n
(B) ![]()
(B) (
p,q:Peg.
(B) (p 
 q
(B) (![]()
(B) ((
a:
, z:{a...}, s:({a...z}![]()
{1...n1}![]()
Peg).
(B) ((s is a Hanoi(n1 disk) seq on a..z & s(a) = (
i.p) & s(z) = (
i.q)
(B) ((![]()
(B) (((2^n1)
z-a+1))
and assuming
p q
(C) 
(D) 
i.p) 
 {1...n}![]()
Peg
(E) 
i.q) 
 {1...n}![]()
Peg
n 0
we aim to show
(*) 
(2^(n-1))
z-a+1
Continued at
About: