HanoiTowers NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in HanoiTowers

Def[bool]bool 1
Def{i...}[int_upper]int 1
Defpermute(p to r ; q to s)[hanoi_peg_perm]
Def[nat]int 1
Defs is a Hanoi(n disk) seq on a..z[hanoi_seq]
DefMoving disk k of n takes f to g[hanoi_step_at]
DefPeg[hanoi_PEG]
Def{i...j}[int_iseg]int 1
DefAB[le]core
DefProp[prop]core
Def[nat_plus]int 1
Defn^k[exponentiation]
Def1of(t)[pi1]core
Deffalse[bfalse]bool 1
Deftrue[btrue]bool 1
Defp=q[eq_hanoi_PEG]
Defif b t else f fi[ifthenelse]bool 1
DefHanoiSTD(n disks; from: p; to: q; indexing from: a)[hanoi_sol2_ala_generalPROG]
DefHanoiHelper(ns1fs2g)[hanoi_general_exists_lemma2PROG]
Defs(?) {to n h {to n'}[hanoi_seq_deepen]
Deff {to n f' {to n'}[hanoi_extend]
Defs1 @(ms2[hanoi_seq_join]
Defij[le_int]bool 1
Defa  b[nequal]core
DefP  Q[iff]core
Defx:AB(x)[all]core
DefP & Q[and]core
Defx:AB(x)[exists]core
DefP  Q[implies]core
Defi=j[eq_int]bool 1
DefY[ycomb]core
DefotherPeg(xy)[hanoi_otherpeg]
DefInj(ABf)[inject]fun 1
DefA[not]core
Defi<j[lt_int]bool 1
Defb[bnot]bool 1
DefP  Q[rev_implies]core

About:
pairspreadspreadproductproductboolbfalsebtrueifthenelse
unititintnatural_numberaddsubtractmultiplyint_eqlessless_than
unioninlinrdecidesetlambda
applyfunctionycombuniverseequalpropimpliesandfalseall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

HanoiTowers NuprlLIB Doc