 n:
n: , f,g:({1...n}
, f,g:({1...n}
 Peg), a:
Peg), a: .
.
Thm*   z:{a...}, s:({a...z}
z:{a...}, s:({a...z}
 {1...n}
{1...n}
 Peg).
Peg).
Thm*  s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g
The proof is by induction on  
 
 {1...0}
 {1...0}
 Peg, a
Peg, a  
 
 x.f)
x.f) x.f) is a Hanoi(0 disk) seq on a..a
x.f) is a Hanoi(0 disk) seq on a..a
 Peg
Peg
Now taking as our inductive hypothesis
f,g:({1...n-1}
Peg), a:
.
z:{a...}, s:({a...z}
{1...n-1}
Peg).
s is a Hanoi(n-1 disk) seq on a..z & s(a) = f & s(z) = g
and assuming  {1...n}
 {1...n}
 Peg, a
Peg, a  
 
 z:{a...}, s:({a...z}
z:{a...}, s:({a...z}
 {1...n}
{1...n}
 Peg).
Peg).
(*) s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g
Is the largest disk already in place? That is, is 
s:({a...z}
{1...n-1}
Peg).
s is a Hanoi(n-1 disk) seq on a..z
& s(a) = f{1...n-1}
Peg
& s(z) = g{1...n-1}
Peg
which will suffice to show our goal by the following lemma
Thm* n:
, f,g:({1...n}
Peg).
Thm* f(n) = g(n)
Thm*
Thm* (a:
, z:{a...}.
Thm* ((s:({a...z}
{1...n-1}
Peg).
Thm* ((s is a Hanoi(n-1 disk) seq on a..z
Thm* ((& s(a) = f{1...n-1}
Peg
Thm* ((& s(z) = g{1...n-1}
Peg)
Thm* (
Thm* ((s:({a...z}
{1...n}
Peg).
Thm* ((s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g))
If, on the other hand,  g(n)
 g(n)
 z:{a...}, m:{a...z-1}, s1:({a...m}
z:{a...}, m:{a...z-1}, s1:({a...m}
 {1...n}
{1...n}
 Peg),
Peg),
(A)  s2:({m+1...z}
s2:({m+1...z}
 {1...n}
{1...n}
 Peg).
Peg).
(A) (s1 @(m) s2) is a Hanoi(n disk) seq on a..z & s1(a) = f & s2(z) = g
where 
Continued at
About:
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |