| Some definitions of interest. | |
| hanoi_seq | Def ==  x,x':{a...z}. Def == x+1 = x'   (  k:{1...n}. Moving disk k of n takes s(x) to s(x')) | 
|  n:  , a,z:  , s:({a...z}   {1...n}   Peg). Thm* s is a Hanoi(n disk) seq on a..z  Prop | |
| hanoi_PEG | |
|  Type | |
| hanoi_seq_join |   m  s1(x) else s2(x) fi | 
|  n:  , m,a,z:  , s1:({a...m}   {1...n}   Peg), s2:({m+1...z}   {1...n}   Peg). Thm* (s1 @(m) s2)  {a...z}   {1...n}   Peg | |
| int_iseg |  | i  k & k  j } | 
|  i,j:  . {i...j}  Type | |
| int_upper |  | i  j } | 
|  n:  . {n...}  Type | |
| member_and |  A, P == x  A & P | 
| nat |  == {i:  | 0  i } | 
|    Type | |
| nat_plus |   == {i:  | 0<i } | 
|     Type | |
| nequal |  b  T ==  a = b  T | 
|  A:Type, x,y:A. (x  y)  Prop | 
About:
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |  |  |