a,z:
, n:
, s:({a...z}
{1...n}
Peg), n':
.
Thm* nn'
Thm*
Thm* (h:({n+1...n'}
Peg).
Thm* (s is a Hanoi(n disk) seq on a..z
Thm* (
Thm* ((s(?) {to n} h {to n'}) is a Hanoi(n' disk) seq on a..z)
In light of
Def s is a Hanoi(n disk) seq on a..z
Def ==x,x':{a...z}.
Def == x+1 = x'(
k:{1...n}. Moving disk k of n takes s(x) to s(x'))
we need to show that for {1...n}
Moving disk k of n' ,
takes (s(?) {to n}h {to n'})(x) to (s(?) {to n}
h {to n'})(x')
that is each move in the original sequence corresponds to moving the same disk in the deepened sequence.
By expanding the definition
Def Moving disk k of n takes f to g
Def == (i:{1...n}. f(i) = g(i)
Peg
i
k)
Def == & (i:{1...k-1}. f(i)
f(k)
Peg & g(i)
g(k)
Peg)
our problem reduces to showing implications between the corresponding conjuncts, namely, that
i:{1...n}. s(x,i) = s(x',i)
i
k)
(A)
(A) (i:{1...n'}.
(A) ((s(?) {to n} h {to n'})(x,i) = (s(?) {to n}
h {to n'})(x',i)
i
k)
and
i:{1...k-1}. s(x,i)
s(x,k) & s(x',i)
s(x',k))
(B)
(B) (i:{1...k-1}.
(B) ((s(?) {to n} h {to n'})(x,i)
(s(?) {to n}
h {to n'})(x,k)
(B) (& (s(?) {to n} h {to n'})(x',i)
(s(?) {to n}
h {to n'})(x',k))
The second of these two entailments (B) follows by (rewriting the conclusion with)
Thm* a,z:
, n:
, s:({a...z}
{1...n}
Peg), n':
.
Thm* nn'
Thm*![]()
Thm* (h:({n+1...n'}
Peg), i:{1...n'}.
Thm* (in
(
x:{a...z}. (s(?) {to n}
h {to n'})(x,i) = s(x,i)))
which simply says deepening leaves the the smaller disks in place. Entailment (A) will require a case split on the size of the disk: assume that i:{1...n}. s(x,i) = s(x',i)
i
k
{1...n'}
(s(?) {to n} h {to n'})(x,i) = (s(?) {to n}
h {to n'})(x',i)
i
k
If n
s(x,i) = s(x',i) i
k
which follows from the antecedent of (A). Otherwise, with
Thm* a,z:
, n:
, s:({a...z}
{1...n}
Peg), n':
.
Thm* nn'
Thm*![]()
Thm* (h:({n+1...n'}
Peg), i:{1...n'}.
Thm* (n<i(
x:{a...z}. (s(?) {to n}
h {to n'})(x,i) = h(i)))
down to i
k
{1...n}
QED
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
![]() |