| Rank | Theorem | Name |
| 4 | Thm* Thm* s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g | [hanoi_general_exists] |
| cites the following: | ||
| 3 | Thm* f(n) = g(n) Thm* Thm* ( Thm* (( Thm* ((s is a Hanoi(n-1 disk) seq on a..z Thm* ((& s(a) = f Thm* ((& s(z) = g Thm* ( Thm* (( Thm* ((s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g)) | [hanoi_general_exists_lemma1] |
| 3 | Thm* f(n) Thm* Thm* ( Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g Thm* (& s1(m) = s2(m+1) Thm* (& ( Thm* Thm* ( Thm* ((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g) | [hanoi_general_exists_lemma2] |
| 0 | [hanoi_otherpeg_diff1] | |
| 1 | [hanoi_otherpeg_diff2] | |
| 0 | Thm* | [hanoi_seq_join_part1] |
| 0 | Thm* | [hanoi_seq_join_part2] |