Rank | Theorem | Name |
4 | ![]() ![]() ![]() ![]() ![]() Thm* ![]() ![]() ![]() ![]() ![]() Thm* s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g | [hanoi_general_exists] |
cites the following: | ||
3 | ![]() ![]() ![]() ![]() ![]() Thm* f(n) = g(n) Thm* ![]() ![]() Thm* ( ![]() ![]() Thm* (( ![]() ![]() ![]() ![]() ![]() Thm* ((s is a Hanoi(n-1 disk) seq on a..z Thm* ((& s(a) = f ![]() ![]() ![]() Thm* ((& s(z) = g ![]() ![]() ![]() Thm* ( ![]() ![]() Thm* (( ![]() ![]() ![]() ![]() ![]() Thm* ((s is a Hanoi(n disk) seq on a..z & s(a) = f & s(z) = g)) | [hanoi_general_exists_lemma1] |
3 | ![]() ![]() ![]() ![]() ![]() ![]() Thm* f(n) ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f ![]() ![]() ![]() Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g ![]() ![]() ![]() Thm* (& s1(m) = s2(m+1) Thm* (& ( ![]() ![]() ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g) | [hanoi_general_exists_lemma2] |
0 | ![]() ![]() ![]() ![]() ![]() | [hanoi_otherpeg_diff1] |
1 | ![]() ![]() ![]() ![]() ![]() | [hanoi_otherpeg_diff2] |
0 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ![]() | [hanoi_seq_join_part1] |
0 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ![]() | [hanoi_seq_join_part2] |