Rank | Theorem | Name |
2 | Thm* nn' Thm* Thm* (h:({n+1...n'}Peg). Thm* (s is a Hanoi(n disk) seq on a..z Thm* ( Thm* ((s(?) {to n} h {to n'}) is a Hanoi(n' disk) seq on a..z) | [hanoi_seq_deepen_seq] |
cites the following: | ||
1 | Thm* nn' Thm* Thm* (h:({n+1...n'}Peg), i:{1...n'}. Thm* (n<i (x:{a...z}. (s(?) {to n} h {to n'})(x,i) = h(i))) | [hanoi_seq_deepen_higheq] |
1 | Thm* nn' Thm* Thm* (h:({n+1...n'}Peg), i:{1...n'}. Thm* (in (x:{a...z}. (s(?) {to n} h {to n'})(x,i) = s(x,i))) | [hanoi_seq_deepen_loweq] |