Rank | Theorem | Name |
2 | Thm* a,z: , n: , s:({a...z} {1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( h:({n+1...n'} Peg).
Thm* (s is a Hanoi(n disk) seq on a..z
Thm* (
Thm* ((s(?) {to n} h {to n'}) is a Hanoi(n' disk) seq on a..z) | [hanoi_seq_deepen_seq] |
cites the following: |
1 | Thm* a,z: , n: , s:({a...z} {1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( h:({n+1...n'} Peg), i:{1...n'}.
Thm* (n<i  ( x:{a...z}. (s(?) {to n} h {to n'})(x,i) = h(i))) | [hanoi_seq_deepen_higheq] |
1 | Thm* a,z: , n: , s:({a...z} {1...n} Peg), n': .
Thm* n n'
Thm* 
Thm* ( h:({n+1...n'} Peg), i:{1...n'}.
Thm* (i n  ( x:{a...z}. (s(?) {to n} h {to n'})(x,i) = s(x,i))) | [hanoi_seq_deepen_loweq] |