Theorem | Name |
Thm* n: , a,z: , m:{a...z-1}, s1:({a...m} {1...n} Peg),
Thm* s2:({m+1...z} {1...n} Peg).
Thm* ( k:{1...n}. Moving disk k of n takes s1(m) to s2(m+1))
Thm* 
Thm* s1 is a Hanoi(n disk) seq on a..m
Thm* 
Thm* s2 is a Hanoi(n disk) seq on m+1..z
Thm* 
Thm* (s1 @(m) s2) is a Hanoi(n disk) seq on a..z | [hanoi_seq_join_seq] |
cites the following: |
Thm* i,j: . i<j i = j i>j | [int_trichot] |
Thm* n: , m,a,z: , s1:({a...m} {1...n} Peg), s2:({m+1...z} {1...n} Peg),
Thm* x:{a...m}. (s1 @(m) s2)(x) = s1(x) | [hanoi_seq_join_part1] |
Thm* n: , m,a,z: , s1:({a...m} {1...n} Peg), s2:({m+1...z} {1...n} Peg),
Thm* x:{m+1...z}. (s1 @(m) s2)(x) = s2(x) | [hanoi_seq_join_part2] |