Rank | Theorem | Name |
4 | Thm* p q Thm* Thm* (a:, z:{a...}, s:({a...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (i.q) Thm* ( Thm* ((2^n)z-a+1) | [hanoi_sol2_lb] |
cites the following: | ||
3 | Thm* p q Thm* Thm* (a:, z:{a...}, s:({a...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = (i.p) & s(z) = (i.q) Thm* ( Thm* ((x:{a...z-1}, y:{x+1...z}, p',q':Peg. Thm* (((u:{a...x}. s(u,n) = p) & (u:{y...z}. s(u,n) = q) Thm* ((& s(x) = (i.p') {1...n-1}Peg & s(y) = (i.q') {1...n-1}Peg Thm* ((& p p' Thm* ((& q q')) | [hanoi_sol2_analemma] |
2 | Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* (x:{a...z}, i:{n'+1...n}. s(a,i) = s(x,i)) Thm* Thm* s is a Hanoi(n' disk) seq on a..z | [hanoi_seq_shallower] |
0 | Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* (a',z':{a...z}. s is a Hanoi(n disk) seq on a'..z') | [hanoi_subseq] |