Rank | Theorem | Name |
4 | ![]() ![]() Thm* p ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() Thm* ( ![]() ![]() Thm* ((2^n) ![]() | [hanoi_sol2_lb] |
cites the following: | ||
3 | ![]() ![]() ![]() Thm* p ![]() Thm* ![]() ![]() Thm* ( ![]() ![]() ![]() ![]() ![]() ![]() Thm* (s is a Hanoi(n disk) seq on a..z & s(a) = ( ![]() ![]() Thm* ( ![]() ![]() Thm* (( ![]() Thm* ((( ![]() ![]() Thm* ((& s(x) = ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* ((& p ![]() Thm* ((& q ![]() | [hanoi_sol2_analemma] |
2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* s is a Hanoi(n disk) seq on a..z Thm* ![]() ![]() Thm* ( ![]() Thm* ![]() ![]() Thm* s is a Hanoi(n' disk) seq on a..z | [hanoi_seq_shallower] |
0 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() Thm* s is a Hanoi(n disk) seq on a..z Thm* ![]() ![]() Thm* ( ![]() | [hanoi_subseq] |