Rank | Theorem | Name |
4 | Thm* p q Thm* Thm* (z:{1...}, s:({1...z}{1...n}Peg). Thm* (s is a Hanoi(n disk) seq on 1..z & s(1) = (i.p) & s(z) = (i.q)) | [hanoi_sol2_via_permshift] |
cites the following: | ||
1 | [hanoi_otherpeg_diff3] | |
1 | [hanoi_otherpeg_diff2] | |
0 | Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* (f:(PegPeg). Thm* (Inj(Peg; Peg; f) (x,i. f(s(x,i))) is a Hanoi(n disk) seq on a..z) | [hanoi_seq_permutepegs] |
0 | [hanoi_peg_perm_is_inj] | |
0 | Thm* s is a Hanoi(n disk) seq on a..z Thm* Thm* (x.s(x-d)) is a Hanoi(n disk) seq on a+d..z+d | [hanoi_seq_shift] |
3 | Thm* f(n) g(n) Thm* Thm* (s1:({a...m}{1...n-1}Peg), s2:({m+1...z}{1...n-1}Peg). Thm* (s1 is a Hanoi(n-1 disk) seq on a..m Thm* (& s1(a) = f {1...n-1}Peg Thm* (& s2 is a Hanoi(n-1 disk) seq on m+1..z Thm* (& s2(z) = g {1...n-1}Peg Thm* (& s1(m) = s2(m+1) Thm* (& (i:{1...n-1}. s1(m,i) f(n) & s2(m+1,i) g(n))) Thm* Thm* (r1:({a...m}{1...n}Peg), r2:({m+1...z}{1...n}Peg). Thm* ((r1 @(m) r2) is a Hanoi(n disk) seq on a..z & r1(a) = f & r2(z) = g) | [hanoi_general_exists_lemma2] |
0 | [hanoi_peg_perm_comp2] | |
0 | [hanoi_peg_perm_comp1] | |
0 | Thm* x:{a...m}. (s1 @(m) s2)(x) = s1(x) | [hanoi_seq_join_part1] |
0 | Thm* x:{m+1...z}. (s1 @(m) s2)(x) = s2(x) | [hanoi_seq_join_part2] |