Our proof has reduced to showing (*1) thru (*4).
i.otherPeg(s(x,n); s(x+1,n)))
{1...n-1}
Peg
Thm* n:
, f,g:({1...n}
Peg), k:{1...n}.
Thm* Moving disk k of n takes f to g
Thm*![]()
Thm* f = (i.otherPeg(f(k); g(k)))
{1...k-1}
Peg
i.otherPeg(s(y-1,n); s(y,n)))
{1...n-1}
Peg
Thm* x,y:Peg. x
y
otherPeg(x; y) = otherPeg(y; x)
Thm* n:
, f,g:({1...n}
Peg), k:{1...n}.
Thm* Moving disk k of n takes f to gMoving disk k of n takes g to f
otherPeg(s(x,n); s(x+1,n))
Thm* x,y:Peg. x
y
x
otherPeg(x; y)
otherPeg(s(y-1,n); s(y,n))
QED
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |