IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Continued from
hanoi sol2 analemma gloss cont
Our proof has reduced to showing (*1) thru (*4).
(*1) s(x) = (i.otherPeg(s(x,n); s(x+1,n))) {1...n-1}Peg follows from (I) and the lemma
Thm* n:, f,g:({1...n}Peg), k:{1...n}.
Thm* Moving disk k of n takes f to g
Thm*
Thm* f = (i.otherPeg(f(k); g(k))) {1...k-1}Peg
(*2) s(y) = (i.otherPeg(s(y-1,n); s(y,n))) {1...n-1}Peg follows from (J), from the lemma just cited, and from a couple of symmetry lemmas
Thm* x,y:Peg. x y otherPeg(x; y) = otherPeg(y; x)
Thm* n:, f,g:({1...n}Peg), k:{1...n}.
Thm* Moving disk k of n takes f to g Moving disk k of n takes g to f
(*3) p otherPeg(s(x,n); s(x+1,n)) follows from the fact that, by (E), p = s(x,n), and the lemma
Thm* x,y:Peg. x y x otherPeg(x; y)
(*4) q otherPeg(s(y-1,n); s(y,n)) follows from the fact that, by (H), q = s(y,n), and the same lemma.
QED
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html