LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  x:AB(x) == x:AB(x)

is mentioned by

Thm*  e:(BB). 
Thm*  (b:Be(b) = b)
Thm*  
Thm*  (A:Type, f:(AAB). (a:A. (Diag f wrt xe(x)) = f(a)))
[diagonalization_wrt_eq]
Thm*  R:(BBProp), e:(BB).
Thm*  (b:BR(e(b),b))
Thm*  
Thm*  (A:Type, f:(AAB). (a:AR((Diag f wrt xe(x))(a),f(a,a))))
[diagonalization]
Thm*  f:(AB). f  A{y:Bx:Af(x) = y }[range_restriction_indep]
Thm*  (x:A!y:BP(x,y))  (f:(AB). x:AP(x,f(x)))[indep_fun_description]
Thm*  (x:Ay:BQ(x,y))  (f:(AB). x:AQ(x,f(x)))[ax_choice_version3]
Thm*  (x:Ay:BQ(x,y))  (f:(AB). x:AQ(x,f(x)))[ax_choice_version2]
Thm*  (x:A!y:B(x). P(x,y))  (f:(x:AB(x)). x:AP(x,f(x)))[fun_description]
Thm*  (x:Ay:B(x). Q(x,y))  (f:(x:AB(x)). x:AQ(x,f(x)))[dep_ax_choice_version2]
Thm*  (x:T. Dec(E(x)))  (f:(T). x:Tf(x E(x))[dec_pred_iff_some_boolfun]
Thm*  (Set:Type, :(SetSetProp).
Thm*  (P:(SetProp). p:Setx:Set. (x  p P(x))
[RussellsParadox_Frege2]
Thm*  (A:Type, Q:(AAProp). P:(AProp). p:Ax:AQ(x,p P(x))[RussellsParadox_Frege]
Thm*  (A Discrete)  (e:(AA). IsEqFun(A;e))[discrete_vs_bool2]
Thm*  (A Discrete)  (e:(AA). x,y:A. (x e y x = y)[discrete_vs_bool]
Thm*  (!A (x:Ay:Ax = y)[inhabited_uniquely_elim]
Thm*  (!A (x:Ay:Ax = y)[inhabited_uniquely_vs_exists]
Thm*  (A (x:A. True)[inhabited_vs_exists]
Thm*  A:Type. P = (A Prop[inhab_rep_axiom]
Thm*  (x:TQ(x))  (x:TQ(x))[not_over_exists_imp]
Thm*  Dec(P (b:b  P)[decbl_iff_some_bool]
Def  !x:AP(x) == x:A. x is the x:AP(x)[exists_unique]

In prior sections: core quot 1

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

LogicSupplement Sections DiscrMathExt Doc