is mentioned by
Thm* (b:B. e(b) = b) Thm* Thm* (A:Type, f:(AAB). (a:A. (Diag f wrt x. e(x)) = f(a))) | [diagonalization_wrt_eq] |
Thm* (b:B. R(e(b),b)) Thm* Thm* (A:Type, f:(AAB). (a:A. R((Diag f wrt x. e(x))(a),f(a,a)))) | [diagonalization] |
[range_restriction_indep] | |
[indep_fun_description] | |
[ax_choice_version3] | |
[ax_choice_version2] | |
[fun_description] | |
[dep_ax_choice_version2] | |
[dec_pred_iff_some_boolfun] | |
Thm* (P:(SetProp). p:Set. x:Set. (x p) P(x)) | [RussellsParadox_Frege2] |
[RussellsParadox_Frege] | |
[discrete_vs_bool2] | |
[discrete_vs_bool] | |
[inhabited_uniquely_elim] | |
[inhabited_uniquely_vs_exists] | |
[inhabited_vs_exists] | |
[inhab_rep_axiom] | |
[not_over_exists_imp] | |
[decbl_iff_some_bool] | |
[exists_unique] |
In prior sections: core quot 1
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html