LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  A =ext B == (x:Ax  B) & (x:Bx  A)

is mentioned by

Thm*  {x:A| if b P(x) else Q(x) fi }
Thm*  =ext
Thm*  if b {x:AP(x) } else {x:AQ(x) } fi
[ifthenelse_distr_subtype]
Thm*  {x:AP(x) } =ext {x:AP(x) }[subset_squash_exteq]
Thm*  (x:AB(x B'(x))  ({x:AB(x) } =ext {x:AB'(x) })[subset_sq_exteq]
Thm*  (x:AB(x B'(x))  ({x:AB(x) } =ext {x:AB'(x) })[subset_exteq]
Thm*  {x:{x:AP(x) }| Q(x) } =ext {x:AP(x) & Q(x) }[exteq_subset_vs_and]
Thm*  {a:{a:A}} =ext {a:A}[singleton_singleton_self]
Thm*  B:(AType), P:(AProp).
Thm*  (i:{i:AP(i) }B(i)) =ext {v:(i:AB(i))| P(v/x,y. x) }
[exteq_sigma_st_dom]

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

LogicSupplement Sections DiscrMathExt Doc