is mentioned by
Thm* (b:B. e(b) = b) Thm* Thm* (A:Type, f:(AAB). (a:A. (Diag f wrt x. e(x)) = f(a))) | [diagonalization_wrt_eq] |
Thm* (b:B. R(e(b),b)) Thm* Thm* (A:Type, f:(AAB). (a:A. R((Diag f wrt x. e(x))(a),f(a,a)))) | [diagonalization] |
Thm* (P:(SetProp). p:Set. x:Set. (x p) P(x)) | [RussellsParadox_Frege2] |
[RussellsParadox_Frege] | |
[no_prop_iff_its_neg] | |
[xor_vs_neg_n_dec] | |
[sq_not_iff_sq] | |
[not_sq_iff_sq] | |
[unique_fn_over_empty] | |
[not_over_exists_imp] | |
[disjunct_elim] | |
[negnegelim_vs_bivalence] | |
[xor] |
In prior sections: core bool 1 rel 1
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html