LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  A == A  False

is mentioned by

Thm*  e:(BB). 
Thm*  (b:Be(b) = b)
Thm*  
Thm*  (A:Type, f:(AAB). (a:A. (Diag f wrt xe(x)) = f(a)))
[diagonalization_wrt_eq]
Thm*  R:(BBProp), e:(BB).
Thm*  (b:BR(e(b),b))
Thm*  
Thm*  (A:Type, f:(AAB). (a:AR((Diag f wrt xe(x))(a),f(a,a))))
[diagonalization]
Thm*  (Set:Type, :(SetSetProp).
Thm*  (P:(SetProp). p:Setx:Set. (x  p P(x))
[RussellsParadox_Frege2]
Thm*  (A:Type, Q:(AAProp). P:(AProp). p:Ax:AQ(x,p P(x))[RussellsParadox_Frege]
Thm*  (P  P)[no_prop_iff_its_neg]
Thm*  P XOR Q  (Q  P) & Dec(P)[xor_vs_neg_n_dec]
Thm*  (P P[sq_not_iff_sq]
Thm*  P  P[not_sq_iff_sq]
Thm*  (A (!(AB))[unique_fn_over_empty]
Thm*  (x:TQ(x))  (x:TQ(x))[not_over_exists_imp]
Thm*  P  Q  P  Q[disjunct_elim]
Thm*  (P:Prop. P  P (P:Prop. P  P)[negnegelim_vs_bivalence]
Def  P XOR Q == P  Q & (P & Q)[xor]

In prior sections: core bool 1 rel 1

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

LogicSupplement Sections DiscrMathExt Doc