LogicSupplement
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Theorem
Name
Thm*
e
:(
B
B
).
Thm*
(
b
:
B
.
e
(
b
) =
b
)
Thm*
Thm*
(
A
:Type,
f
:(
A
A
B
).
(
a
:
A
. (Diag
f
wrt
x
.
e
(
x
)) =
f
(
a
)))
[diagonalization_wrt_eq]
cites the following:
Thm*
R
:(
B
B
Prop),
e
:(
B
B
).
Thm*
(
b
:
B
.
R
(
e
(
b
),
b
))
Thm*
Thm*
(
A
:Type,
f
:(
A
A
B
).
(
a
:
A
.
R
((Diag
f
wrt
x
.
e
(
x
))(
a
),
f
(
a
,
a
))))
[diagonalization]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
LogicSupplement
Sections
DiscrMathExt
Doc