| Some definitions of interest. |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
sfa_doc_indscheme | Def Induction for x: . P(x) == P(0) & ( x: . P(x)  P(x+1))  ( x: . P(x)) |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
sfa_doc_le_parm_sample_def | Def HigherConsequence{i}(P) == {X:Prop{i'}| P  X } |
|
sfa_doc_tok_num_literal | Def $abc.$n == <"$abc",$n> |
|
sfa_doc_weird_def | Def Weird(x; u,v. F(u;v)) == F(F(x;0);x) |