Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
sfa_doc_sexprDef Sexpr(A) == rec(T.(TT)+A)
Thm* A:Type. Sexpr(A Type
sfa_doc_sexpr_casesDef Case of s :  Inj(x g(x) ; Cons(s1;s2 f(s1;s2)
Def == InjCase(ss1s2s1s2/s1,s2f(s1;s2); xg(x))
Thm* A:Type, C:(Sexpr(A)Type), s:Sexpr(A),
Thm* f:(s1,s2:Sexpr(A)C(Cons(s1;s2))), g:(x:AC(Inj(x))).
Thm* (Case of s :  Inj(x g(x) ; Cons(s1;s2 f(s1,s2))  C(s)
sfa_doc_sexpr_consDef Cons(s1;s2) == inl(<s1,s2>)
Thm* A:Type, s1,s2:Sexpr(A). Cons(s1;s2 Sexpr(A)
sfa_doc_sexpr_injDef Inj(a) == inr(a)
Thm* A:Type, a:A. Inj(a Sexpr(A)

About:
pairspreadproductunioninlinr
decidefunctionrecuniversemember
all!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc