| Some definitions of interest. |
|
sfa_doc_sexpr | Def Sexpr(A) == rec(T.(TT)+A) |
| | Thm* A:Type. Sexpr(A) Type |
|
sfa_doc_sexpr_cdr | Def sexprCdr(s) == Case of s : Inj(x) Inj(x) ; Cons(s1;s2) s2 |
| | Thm* A:Type, s:Sexpr(A). sexprCdr(s) Sexpr(A) |
|
sfa_doc_sexpr_cases | Def Case of s : Inj(x) g(x) ; Cons(s1;s2) f(s1;s2)
Def == InjCase(s; s1s2. s1s2/s1,s2. f(s1;s2); x. g(x)) |
| | Thm* A:Type, C:(Sexpr(A)Type), s:Sexpr(A),
Thm* f:(s1,s2:Sexpr(A)C(Cons(s1;s2))), g:(x:AC(Inj(x))).
Thm* (Case of s : Inj(x) g(x) ; Cons(s1;s2) f(s1,s2)) C(s) |
|
sfa_doc_sexpr_inj | Def Inj(a) == inr(a) |
| | Thm* A:Type, a:A. Inj(a) Sexpr(A) |