| Some definitions of interest. |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
nat_plus | Def  == {i: | 0<i } |
| | Thm*  Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & ( b,c: . a | b c  a | b a | c) |
| | Thm* a: . prime(a) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |