Origin Definitions Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
PrimesSquareRoots
Nuprl Section: PrimesSquareRoots - Stand-alone sample: Primes have no rational square roots.

Selected Objects
IntroductionIntroductory Remarks
THMprime_divides_square
A number and its square have the same prime divisors.
a:. prime(a (x:a | xx  a | x)
THMnat_descent
There is no inhabited class of natural numbers in which one can always find a smaller member.
P:(Prop). (x:P(x (x':x'<x & P(x')))  (x:P(x))
THMtwo_sqr_roots_LEMMA1
(Proof Gloss)
Lemma for Thm: two sqr roots, rewriting (pp = 2qq) to (qq = 2p'p')
p:q:pp = 2qq  (p':p'<p & qq = 2p'p')
THMtwo_sqr_roots
(Proof Gloss)
2 has no rational square root.
(p:q:pp = 2qq)
COMtwo_sqr_roots_example1
An example of the two step rewrite ...
THMprimes_sqr_roots_LEMMA1
(Proof Gloss)
Lemma for Thm: primes sqr roots, rewriting (pp = aqq) to (qq = ap'p')
a:. prime(a (p:q:pp = aqq  (p':p'<p & qq = ap'p'))
THMprimes_sqr_roots
(Proof Gloss)
Primes have no rational square roots.
a:. prime(a (p:q:pp = aqq)
COMprimes_sqr_roots_example1
An example of the two step rewrite ...
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Origin Definitions Sections DiscrMathExt Doc