PfPrintForm Definitions PrimesSquareRoots Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(PREVIOUS)

Gloss of Lemma enabling rewrite of (pp = aqq) to (qq = ap'p').

Thm*  a:
Thm*  prime(a (p:q:pp = aqq  (p':p'<p & qq = ap'p'))

Since a divides pp, and is prime, it also divides p, by

Thm*  a:. prime(a (x:a | xx  a | x)

so let p = ap'.

Note that a, p, and p' must be positive,
since prime(a), aqq>0, pp>0, and ap'>0.

So these are equal:

aqq, pp, ap'ap', aap'p'

and qq = ap'p' by cancellation of a.

And p'<p, since p = ap' and 1<a, since prime(a).

QED

About:
intnatural_numbermultiplyless_thanequalimpliesandallexists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

PfPrintForm Definitions PrimesSquareRoots Sections DiscrMathExt Doc