PrimesSquareRoots Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
11Thm*  a:
Thm*  prime(a (p:q:pp = aqq  (p':p'<p & qq = ap'p'))
[primes_sqr_roots_LEMMA1]
cites the following:
1Thm*  a:. prime(a (x:a | xx  a | x)[prime_divides_square]
3Thm*  a,b:ab>0  a>0 & b>0  a<0 & b<0[pos_mul_arg_bounds]
1Thm*  a,b:n:na<nb  a<b[mul_cancel_in_lt]
0Thm*  a,b:ab = ba[mul_com]
1Thm*  a,b:n:a<b  na<nb[mul_preserves_lt]
10Thm*  x:. prime(x 2x & (i:{2..x}. i | x)[prime_nat]
3Thm*  a,b:n:na = nb  a = b[mul_cancel_in_eq]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
PrimesSquareRoots Sections DiscrMathExt Doc