SimpleMulFacts Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  prime(a) == a = 0 & (a ~ 1) & (b,c:a | bc  a | b  a | c)

is mentioned by

Thm*  a,b:. prime(ab ab = a  ab = b[prime_among_factors]
Thm*  x:{2...}, y:. prime(y x | y  x = y  [prime_nat_divby_self_only]
Thm*  b:. prime(b b | 1[no_prime_divs_one_b]
Thm*  b:b | 1  prime(b)[no_prime_divs_one]
Thm*  b:b | 1  prime(b)[no_nat_prime_divs_one]
Thm*  !{p:()| x:p(x prime(x) }[prime_decider_exists]
Thm*  x:. Dec(prime(x))[decidable__prime]
Thm*  y:. prime(-y prime(y)[prime_neg]
Thm*  x:{2...}. p:{2...}. px & prime(p) & p | x[prime_or_smaller_prime_factor]
Thm*  x:{2...}. p:{2...}, c:{1...}. px & prime(p) & x = pc[prime_or_smaller_prime_factor2]
Thm*  x:{2...}. prime(x (i,j:{2..x}. x = ij & prime(i))[composite_with_prime_factor]
Thm*  x:prime(x x<2  (i,j:{2..x}. x = ij)[nonprime_nat]
Thm*  x:. prime(x (i:{2..x}. i | x)[natprime_nondivs]
Thm*  x:. prime(x 2x[natprimes_lb]
Thm*  x:. prime(x 2x & (i:{2..x}. i | x)[prime_nat]
Def  Prime == {x:| prime(x) }[prime_nats]

In prior sections: num thy 1

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

SimpleMulFacts Sections DiscrMathExt Doc