Selected Objects
| COM | simple_mul_factsVERSION
|
1 |
| THM | nat_prod_one_iff_factors_one
|
x,y: . x y = 1  x = 1 & y = 1 |
| THM | prod_zero_iff_factor_zero
|
a,b: . a b = 0  a = 0 b = 0 |
| THM | mul_nat_com
|
a,b,c,d: . a = b  c = d  a c = d b  |
| THM | nat_factor_cancel_rw
|
a,b: , n: . n a n b  a b |
| THM | mul_cancel_in_eq1
|
a,b: , n:  . n a = n b  a = b |
| THM | mul_cancel_in_eq2
|
a,b: , m,n:  . m = n  (m a = n b  a = b) |
| THM | le_mul_rt_by_pos
|
x,y: , z: . x y  x y z |
| THM | factor_bound
|
k: , n: , x,y: . k x+n = k y  x y |
| THM | lt_mul_rt_by_pos
|
x,y: , z: . x<y  x<y z |
| THM | factors_bound
|
i,j: . i i j & j i j |
| THM | pos_mul_arg_boundsNat
|
a,b: . 0<a b  0<a & 0<b |
| THM | pos_mul_arg_boundsNat2
|
i,j: . 0<i j  i i j & j i j |
| THM | factor_smaller
|
i:{2...}, j:{1...}. j<i j |
| THM | factor_smaller2
|
i:{2...}, j: . j<i j |
| THM | factors_smaller
|
i,j:{2...}. i<i j & j<i j |
| THM | factors_smaller2
|
k: , i:{2..k }, j: . i j = k  2 j < k & i<k |
| THM | mul_nat_plus
|
x,y: . x y   |
| THM | divides_def_on_nat
|
a divides b (specialized to natural numbers)
a,b: . a | b  ( c: . b = a c) |
| THM | only_one_nat_divs_one
|
b: . b | 1  b = 1 |
| THM | div_inverts_nat_mul
|
x,y: , z: . x = y z  (x z) = y |
| THM | div_inverts_nat_mul2
|
x: , y,z: . x = y z  (x z) = y |
| THM | prime_nat
|
x: . prime(x)  2 x & ( i:{2..x }. i | x) |
| def | prime_nats
|
Prime == {x: | prime(x) } |
| THM | natprimes_lb
|
x: . prime(x)  2 x |
| THM | natprime_nondivs
|
x: . prime(x)  ( i:{2..x }. i | x) |
| THM | nonprime_nat
|
x: . prime(x)  x<2 ( i,j:{2..x }. x = i j) |
| THM | composite_with_prime_factor
|
x:{2...}. prime(x)  ( i,j:{2..x }. x = i j & prime(i)) |
| THM | prime_or_smaller_prime_factor2
|
x:{2...}. p:{2...}, c:{1...}. p x & prime(p) & x = p c |
| THM | prime_or_smaller_prime_factor
|
A number bigger than 1 is divisible by a prime.
x:{2...}. p:{2...}. p x & prime(p) & p | x |
| THM | prime_neg
|
y: . prime(-y)  prime(y) |
| THM | decidable__prime
|
x: . Dec(prime(x)) |
| THM | prime_decider_exists
|
! {p:(   )| x: . p(x)  prime(x) } |
| def | prime_decider
|
Boolean decider for primeness implicit in Thm* ! {p:(   )| x: . p(x)  prime(x) }
is_prime(x) == prime_decider_exists{1:l}(x) |
| THM | no_nat_prime_divs_one
|
b: . b | 1  prime(b) |
| THM | no_prime_divs_one
|
One has no prime divisors.
b: . b | 1  prime(b) |
| THM | no_prime_divs_one_b
|
One has no prime divisors.
b: . prime(b)  b | 1 |
| THM | prime_nat_divby_self_only
|
x:{2...}, y: . prime(y)  x | y  x = y  |
| THM | prime_among_factors
|
Factoring a prime always includes the prime itself.
a,b: . prime(a b)  a b = a a b = b |