COM | simple_mul_factsVERSION
| 1 |
THM | nat_prod_one_iff_factors_one
|
|
THM | prod_zero_iff_factor_zero
|
|
THM | mul_nat_com
|
|
THM | nat_factor_cancel_rw
|
|
THM | mul_cancel_in_eq1
|
|
THM | mul_cancel_in_eq2
|
|
THM | le_mul_rt_by_pos
|
|
THM | factor_bound
|
|
THM | lt_mul_rt_by_pos
|
|
THM | factors_bound
|
|
THM | pos_mul_arg_boundsNat
|
|
THM | pos_mul_arg_boundsNat2
|
|
THM | factor_smaller
|
|
THM | factor_smaller2
|
|
THM | factors_smaller
|
|
THM | factors_smaller2
|
|
THM | mul_nat_plus
|
|
THM | divides_def_on_nat
|
|
THM | only_one_nat_divs_one
|
|
THM | div_inverts_nat_mul
|
|
THM | div_inverts_nat_mul2
|
|
THM | prime_nat
|
|
def | prime_nats
|
|
THM | natprimes_lb
|
|
THM | natprime_nondivs
|
|
THM | nonprime_nat
|
|
THM | composite_with_prime_factor
|
|
THM | prime_or_smaller_prime_factor2
|
|
THM | prime_or_smaller_prime_factor
|
A number bigger than 1 is divisible by a prime.
|
THM | prime_neg
|
|
THM | decidable__prime
|
|
THM | prime_decider_exists
|
|
def | prime_decider
|
Boolean decider for primeness implicit in |
THM | no_nat_prime_divs_one
|
|
THM | no_prime_divs_one
|
One has no prime divisors.
|
THM | no_prime_divs_one_b
|
One has no prime divisors.
|
THM | prime_nat_divby_self_only
|
|
THM | prime_among_factors
|
Factoring a prime always includes the prime itself.
|