Definitions
SimpleMulFacts
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
prime
Def
prime(
a
) ==
a
= 0 &
(
a
~ 1) & (
b
,
c
:
.
a
|
b
c
a
|
b
a
|
c
)
Thm*
a
:
. prime(
a
)
Prop
divides
Def
b
|
a
==
c
:
.
a
=
b
c
Thm*
a
,
b
:
. (
a
|
b
)
Prop
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
le
Def
A
B
==
B
<
A
Thm*
i
,
j
:
. (
i
j
)
Prop
not
Def
A
==
A
False
Thm*
A
:Prop. (
A
)
Prop
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
SimpleMulFacts
Sections
DiscrMathExt
Doc