Definitions SimpleMulFacts Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
atomicDef  atomic(a) == a = 0 & (a ~ 1) & reducible(a)
Thm*  a:. atomic(a Prop
primeDef  prime(a) == a = 0 & (a ~ 1) & (b,c:a | bc  a | b  a | c)
Thm*  a:. prime(a Prop
dividesDef  b | a == c:a = bc
Thm*  a,b:. (a | b Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
intnatural_numbermultiplyless_thansetuniverseequalmemberprop
impliesandorfalseallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions SimpleMulFacts Sections DiscrMathExt Doc