Rank | Theorem | Name |
10 | Thm* x:. prime(x) 2x & (i:{2..x}. i | x) | [prime_nat] |
cites the following: |
9 | Thm* p:. prime(p) p = 0 & (p ~ 1) & (a:. a | p (a ~ 1) (a ~ p)) | [prime_elim] |
9 | Thm* a:. atomic(a) prime(a) | [atomic_imp_prime] |
7 | Thm* a:. atomic(a) (a ~ 1) & (b:. b | a (b ~ 1) (b ~ a)) | [atomic_char] |
2 | Thm* a,b:. |a| | |b| a | b | [divides_of_absvals] |
0 | Thm* i:. |i| = i | [absval_pos] |
2 | Thm* EquivRel x,y:. x ~ y | [assoced_equiv_rel] |
3 | Thm* a:. |a| ~ a | [absval_assoced] |
6 | Thm* a,b:. (a ~ b) a = b | [assoced_nelim] |
1 | Thm* a:, b:. a | b ab | [divisors_bound] |
0 | Thm* a:. 0 | a a = 0 | [zero_divs_only_zero] |
1 | Thm* Dec(A) ((A & B) A B) | [not_over_and] |