WhoCites Definitions SimpleMulFacts Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
EquivRel _1,_2:AR(_1;_2) is alpha-equivalent to EquivRel x,y:AR(x;y).

Who Cites equiv rel?
equiv_relDef  EquivRel x,y:TE(x;y)
Def  == Refl(T;x,y.E(x;y)) & (Sym x,y:TE(x;y)) & (Trans x,y:TE(x;y))
Thm*  T:Type, E:(TTProp). (EquivRel x,y:TE(x,y))  Prop
transDef  Trans x,y:TE(x;y) == a,b,c:TE(a;b E(b;c E(a;c)
Thm*  T:Type, E:(TTProp). (Trans x,y:TE(x,y))  Prop
symDef  Sym x,y:TE(x;y) == a,b:TE(a;b E(b;a)
Thm*  T:Type, E:(TTProp). (Sym x,y:TE(x,y))  Prop
reflDef  Refl(T;x,y.E(x;y)) == a:TE(a;a)
Thm*  T:Type, E:(TTProp). Refl(T;x,y.E(x,y))  Prop

Syntax:EquivRel x,y:TE(x;y) has structure: equiv_rel(Tx,y.E(x;y))

About:
functionuniversememberpropimpliesandall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions SimpleMulFacts Sections DiscrMathExt Doc