Thm* Auto:Automata(Alph;St), g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
)
, c:(St
Alph*).
(
q:St. (Result(Auto)c(q)) = q)
(
q:St, a:Alph.
c(
Auto(q,a)) =
A(g)(c(q),a)
x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
homo_step
Thm* Auto:Automata(Alph;St), g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
)
, c:(St
Alph*).
(
q:St. (Result(Auto)c(q)) = q)
c(InitialState(Auto)) = nil
x,y:Alph*//(x LangOf(Auto)-induced Equiv y)
homo_init
Thm* Auto:Automata(Alph;St)
, g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
). Auto
A(g)
lang_auto_is_min
Thm* Alph:Type, L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))
).
A(g)
Automata(Alph;x,y:Alph*//(x L-induced Equiv y))
lang_auto_wf
Thm* A1:Automata(Alph;S1), A2:Automata(Alph;S2).
Con(A1) & Con(A2)
LangOf(A1) = LangOf(A2)
A1
A2 & A2
A1
A1
A2
refine_iso
Thm* A1:Automata(Alph;S1), A2:Automata(Alph;S2).
Con(A1) & Con(A2)
A1
A2
|S1|
|S2|
refine_ge
Thm* A1:Automata(Alph;S1), A2:Automata(Alph;S2). A1
A2
A2
A1
auto_iso_sym
In prior sections: det automata myhill nerode