automata 4 Sections AutomataTheory Doc

Def A(g) == < (s,a. a.s),nil,g >

Thm* Auto:Automata(Alph;St), g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) , c:(StAlph*). (q:St. (Result(Auto)c(q)) = q) (q:St, a:Alph. c(Auto(q,a)) = A(g)(c(q),a) x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) homo_step

Thm* Auto:Automata(Alph;St) , g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))). Auto A(g) lang_auto_is_min

Thm* L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))). (l:Alph*. L(l) g(l)) LangOf(A(g)) = L lang_auto_lem

Thm* L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))), l:Alph*. (Result(A(g))l) = l x,y:Alph*//(x L-induced Equiv y) lang_auto_compute