Thms automata 5 Sections AutomataTheory Doc

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

About:
!abstractionallexistsequalapplyuniversefunction
memberpropimpliesfalseless_thanintand
setnatural_numberint_eqbtruebfalsebool