Thm* Auto:Automata(Alph;St), S:Type, A:Automata(Alph;S).
Fin(Alph)
Fin(S)
Con(A)
(S ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
LangOf(Auto) = LangOf(A)
A
MinAuto(Auto)
any_iso_min_auto
Thm* Auto:Automata(Alph;St), S:Type, A:Automata(Alph;S).
Fin(Alph)
Fin(St)
LangOf(Auto) = LangOf(A)
Con(A)
|S|
|x,y:Alph*//(x LangOf(Auto)-induced Equiv y)|
any_ge_min_auto
Thm* Auto:Automata(Alph;St). Fin(Alph) & Fin(St)
Con(MinAuto(Auto))
min_auto_con
Thm* Auto:Automata(Alph;St).
Con(Auto)
& (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
& Fin(Alph)
& Fin(St)
Auto
A(
l.Auto(l)
)
min_is_unique
Thm* Auto:Automata(Alph;St), c:(St
Alph*).
(
q:St. (Result(Auto)c(q)) = q)
& Fin(Alph)
& Fin(St)
& (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
Inj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c)
homo_is_inj
Thm* f:(A
B). (A ~ B) & Fin(B)
Surj(A; B; f)
Inj(A; B; f)
surj_is_inj_gen
Thm* Auto:Automata(Alph;St), c:(St
Alph*).
(
q:St. (Result(Auto)c(q)) = q) & Fin(Alph) & Fin(St)
Surj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c)
homo_is_surj
Thm* E:(Alph*
Alph*
Prop).
Fin(Alph) & (EquivRel x,y:Alph*. x E y) & (
x,y:Alph*. Dec(x E y))
(
h:(Alph*
Alph*).
(
x,y:Alph*. (x E y)
h(x) = h(y)) & (
x:Alph*. x E (h(x))))
fin_alph_list_quo
Thm* Auto:Automata(Alph;St).
Fin(Alph) & Fin(St)
(
x,y:Alph*.
Dec(x = y
x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
Rl_quo_is_decidable
Thm* Auto:Automata(Alph;St).
Fin(Alph) & Fin(St)
Fin(x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
mn_13
In prior sections: finite sets list 3 autom exponent det automata myhill nerode