Thm*
Auto:Automata(Alph;St), S:Type, A:Automata(Alph;S).
Fin(Alph) ![]()
Fin(S) ![]()
Con(A) ![]()
(S ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) ![]()
LangOf(Auto) = LangOf(A) ![]()
A
MinAuto(Auto)
any_iso_min_auto
Thm*
Auto:Automata(Alph;St), S:Type, A:Automata(Alph;S).
Fin(Alph) ![]()
Fin(St) ![]()
LangOf(Auto) = LangOf(A) ![]()
Con(A) ![]()
|S|
|x,y:Alph*//(x LangOf(Auto)-induced Equiv y)|
any_ge_min_auto
Thm*
Auto:Automata(Alph;St). Fin(Alph) & Fin(St) ![]()
Con(MinAuto(Auto))
min_auto_con
Thm*
Auto:Automata(Alph;St).
Con(Auto)
& (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
& Fin(Alph)
& Fin(St)
![]()
Auto
A(
l.Auto(l)
)
min_is_unique
Thm*
Auto:Automata(Alph;St), c:(St![]()
Alph*).
(
q:St. (Result(Auto)c(q)) = q)
& Fin(Alph)
& Fin(St)
& (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
![]()
Inj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c)
homo_is_inj
Thm*
f:(A![]()
B). (A ~ B) & Fin(B) ![]()
Surj(A; B; f) ![]()
Inj(A; B; f)
surj_is_inj_gen
Thm*
Auto:Automata(Alph;St), c:(St![]()
Alph*).
(
q:St. (Result(Auto)c(q)) = q) & Fin(Alph) & Fin(St) ![]()
Surj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c)
homo_is_surj
Thm*
E:(Alph*![]()
Alph*![]()
Prop).
Fin(Alph) & (EquivRel x,y:Alph*. x E y) & (
x,y:Alph*. Dec(x E y)) ![]()
(
h:(Alph*![]()
Alph*).
(
x,y:Alph*. (x E y) ![]()
h(x) = h(y)) & (
x:Alph*. x E (h(x))))
fin_alph_list_quo
Thm*
Auto:Automata(Alph;St).
Fin(Alph) & Fin(St) ![]()
(
x,y:Alph*.
Dec(x = y
x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
Rl_quo_is_decidable
Thm*
Auto:Automata(Alph;St).
Fin(Alph) & Fin(St) ![]()
Fin(x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
mn_13
In prior sections: finite sets list 3 autom exponent det automata myhill nerode