 n:
n: , f:(
, f:( n
n
 s). Bij(
s). Bij( n; s; f)
n; s; f)
 Thm*  L:LangOver(Alph). 
 Fin(Alph)
L:LangOver(Alph). 
 Fin(Alph) 
 Fin(x,y:Alph*//L-induced Equiv(x,y))  &  (
 
 Fin(x,y:Alph*//L-induced Equiv(x,y))  &  ( l:Alph*. Dec(L(l)))
l:Alph*. Dec(L(l))) 
 (
 
 ( St:Type, Auto:Automata(Alph;St). Fin(St)  &  L = LangOf(Auto))
 
 mn_31
St:Type, Auto:Automata(Alph;St). Fin(St)  &  L = LangOf(Auto))
 
 mn_31
 Thm*  n:{1...}, A:Type, L:LangOver(A), R:(A*
n:{1...}, A:Type, L:LangOver(A), R:(A*
 A*
A*
 Prop).
 Fin(A)
Prop).
 Fin(A) 
 (EquivRel x,y:A*. x R y)
 
 (EquivRel x,y:A*. x R y) 
 (
 
 ( n ~ (x,y:A*//(x R y)))
n ~ (x,y:A*//(x R y))) 
 (
 
 ( x,y,z:A*. (x R y)
x,y,z:A*. (x R y) 
 ((z @ x) R (z @ y)))
 ((z @ x) R (z @ y))) 
 (
 
 ( g:((x,y:A*//(x R y))
g:((x,y:A*//(x R y))

 ).
).  l:A*. L(l)
l:A*. L(l) 
 g(l))
 g(l)) 
 (
 
 ( m:
m: .
.  m ~ (x,y:A*//(x L-induced Equiv y)))  &  (
m ~ (x,y:A*//(x L-induced Equiv y)))  &  ( l:A*. Dec(L(l)))
 
 mn_23
l:A*. Dec(L(l)))
 
 mn_23
 Thm*  R:(Alph*
R:(Alph*
 Alph*
Alph*
 Prop). 
 Fin(Alph)
Prop). 
 Fin(Alph) 
 (EquivRel x,y:Alph*. x R y)
 
 (EquivRel x,y:Alph*. x R y) 
 Fin(x,y:Alph*//(x R y))
 
 Fin(x,y:Alph*//(x R y)) 
 (
 
 ( x,y,z:Alph*. (x R y)
x,y,z:Alph*. (x R y) 
 ((z @ x) R (z @ y)))
 ((z @ x) R (z @ y))) 
 (
 
 ( g:((x,y:Alph*//(x R y))
g:((x,y:Alph*//(x R y))

 ), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
 
 mn_23_lem_1
), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
 
 mn_23_lem_1
 Thm*  R:(Alph*
R:(Alph*
 Alph*
Alph*
 Prop). 
 Fin(Alph)
Prop). 
 Fin(Alph) 
 (EquivRel x,y:Alph*. x R y)
 
 (EquivRel x,y:Alph*. x R y) 
 Fin(x,y:Alph*//(x R y))
 
 Fin(x,y:Alph*//(x R y)) 
 (
 
 ( x,y,z:Alph*. (x R y)
x,y,z:Alph*. (x R y) 
 ((z @ x) R (z @ y)))
 ((z @ x) R (z @ y))) 
 (
 
 ( g:((x,y:Alph*//(x R y))
g:((x,y:Alph*//(x R y))

 ), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
 
 mn_23_lem
), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
 
 mn_23_lem
 Thm*  S:ActionSet(Alph), sL:S.car*.
 Fin(Alph)
S:ActionSet(Alph), sL:S.car*.
 Fin(Alph) 
 Fin(S.car)
 
 Fin(S.car) 
 (
 
 ( TBL:S.car*.
TBL:S.car*. 
  s:S.car. mem_f(S.car;s;TBL)
s:S.car. mem_f(S.car;s;TBL) 
 (
 ( w:Alph*. mem_f(S.car;(S:w
w:Alph*. mem_f(S.car;(S:w s);sL)))
 
 total_back_listify
s);sL)))
 
 total_back_listify
 Thm*  f:(T
f:(T

 ). Fin(T)
). Fin(T) 
 (
 ( fL:T*.
fL:T*.  t:T. f(t)
t:T. f(t) 
 mem_f(T;t;fL))    bool_listify
 mem_f(T;t;fL))    bool_listify
 Thm*  S:ActionSet(Alph), s:S.car.
 Fin(Alph)
S:ActionSet(Alph), s:S.car.
 Fin(Alph) 
 Fin(S.car)
 
 Fin(S.car) 
 (
 
 ( BL:S.car*.
BL:S.car*.  t:S.car. mem_f(S.car;t;BL)
t:S.car. mem_f(S.car;t;BL) 
 (
 ( a:Alph. S.act(a,t) = s))
 
 back_listify
a:Alph. S.act(a,t) = s))
 
 back_listify
 Thm* Fin(T) 
 (
 ( TL:T*.
TL:T*.  t:T. mem_f(T;t;TL))    fin_listify
t:T. mem_f(T;t;TL))    fin_listify
 Thm*  L:LangOver(Alph). 
 Fin(Alph)
L:LangOver(Alph). 
 Fin(Alph) 
 (
 
 ( St:Type, Auto:Automata(Alph;St). Fin(St)  &  L = LangOf(Auto))
St:Type, Auto:Automata(Alph;St). Fin(St)  &  L = LangOf(Auto)) 
 (
 
 ( R:(Alph*
R:(Alph*
 Alph*
Alph*
 Prop). 
 (EquivRel x,y:Alph*. x R y) c
Prop). 
 (EquivRel x,y:Alph*. x R y) c (
 ( g:((x,y:Alph*//R(x,y))
g:((x,y:Alph*//R(x,y))

 ). 
 Fin(x,y:Alph*//R(x,y))
  &  (
). 
 Fin(x,y:Alph*//R(x,y))
  &  ( l:Alph*. L(l)
l:Alph*. L(l) 
 g(l))
  &  (
 g(l))
  &  ( x,y,z:Alph*. R(x,y)
x,y,z:Alph*. R(x,y) 
 R((z @ x),z @ y))))
 
 mn_12
 R((z @ x),z @ y))))
 
 mn_12
In prior sections: finite sets list 3 autom exponent det automata