Thm* L:LangOver(Alph).
Fin(Alph)
Fin(x,y:Alph*//L-induced Equiv(x,y)) & (
l:Alph*. Dec(L(l)))
(
St:Type, Auto:Automata(Alph;St). Fin(St) & L = LangOf(Auto))
mn_31
Thm* n:{1...}, A:Type, L:LangOver(A), R:(A*
A*
Prop).
Fin(A)
(EquivRel x,y:A*. x R y)
(
n ~ (x,y:A*//(x R y)))
(
x,y,z:A*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:A*//(x R y))
).
l:A*. L(l)
g(l))
(
m:
.
m ~ (x,y:A*//(x L-induced Equiv y))) & (
l:A*. Dec(L(l)))
mn_23
Thm* R:(Alph*
Alph*
Prop).
Fin(Alph)
(EquivRel x,y:Alph*. x R y)
Fin(x,y:Alph*//(x R y))
(
x,y,z:Alph*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:Alph*//(x R y))
), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
mn_23_lem_1
Thm* R:(Alph*
Alph*
Prop).
Fin(Alph)
(EquivRel x,y:Alph*. x R y)
Fin(x,y:Alph*//(x R y))
(
x,y,z:Alph*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:Alph*//(x R y))
), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
mn_23_lem
Thm* S:ActionSet(Alph), sL:S.car*.
Fin(Alph)
Fin(S.car)
(
TBL:S.car*.
s:S.car. mem_f(S.car;s;TBL)
(
w:Alph*. mem_f(S.car;(S:w
s);sL)))
total_back_listify
Thm* f:(T
). Fin(T)
(
fL:T*.
t:T. f(t)
mem_f(T;t;fL)) bool_listify
Thm* S:ActionSet(Alph), s:S.car.
Fin(Alph)
Fin(S.car)
(
BL:S.car*.
t:S.car. mem_f(S.car;t;BL)
(
a:Alph. S.act(a,t) = s))
back_listify
Thm* Fin(T) (
TL:T*.
t:T. mem_f(T;t;TL)) fin_listify
Thm* L:LangOver(Alph).
Fin(Alph)
(
St:Type, Auto:Automata(Alph;St). Fin(St) & L = LangOf(Auto))
(
R:(Alph*
Alph*
Prop).
(EquivRel x,y:Alph*. x R y) c
(
g:((x,y:Alph*//R(x,y))
).
Fin(x,y:Alph*//R(x,y))
& (
l:Alph*. L(l)
g(l))
& (
x,y,z:Alph*. R(x,y)
R((z @ x),z @ y))))
mn_12
In prior sections: finite sets list 3 autom exponent det automata