automata 5 Sections AutomataTheory Doc

Def A ~ B == f:(AB), g:(BA). InvFuns(A; B; f; g)

Thm* Auto:Automata(Alph;St), S:Type, A:Automata(Alph;S). Fin(Alph) Fin(S) Con(A) (S ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) LangOf(Auto) = LangOf(A) A MinAuto(Auto) any_iso_min_auto

Thm* Auto:Automata(Alph;St). Con(Auto) & (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) & Fin(Alph) & Fin(St) Auto A(l.Auto(l)) min_is_unique

Thm* Auto:Automata(Alph;St), c:(StAlph*). (q:St. (Result(Auto)c(q)) = q) & Fin(Alph) & Fin(St) & (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) Inj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c) homo_is_inj

Thm* f:(AB). (A ~ B) & Fin(B) Surj(A; B; f) Inj(A; B; f) surj_is_inj_gen

In prior sections: fun 1 finite sets exponent relation autom myhill nerode