Thm* n:{1...}, A:Type, R:(A
A
Prop).
(
n ~ A)
(EquivRel x,y:A. x R y)
(
x,y:A. Dec(x R y))
(
m:
(n+1).
m ~ (x,y:A//(x R y)))
quotient_of_finite
Thm* (A ~ B) (B ~ C)
(A ~ C) one_one_corr_tran
Thm* (A ~ B) (B ~ A) one_one_corr_symm
Thm* A ~ A one_one_corr_refl
Thm* R:(T
T
Prop).
(EquivRel x,y:T. x R y)
(
Q:((x,y:T//(x R y))
(x,y:T//(x R y))
Prop).
(EquivRel u,v:x,y:T//(x R y). u Q v)
((x,y:T//(x Q y)) ~ (u,v:(x,y:T//(x R y))//(u Q v))))
quo_of_quo
Thm* n:{1...}, E:(
n
n
Prop).
(EquivRel x,y:
n. x E y) & (
x,y:
n. Dec(x E y))
(
m:
(n+1).
m ~ (i,j:
n//(i E j)))
quotient_of_nsubn
In prior sections: fun 1