Selected Objects
THM | incl_aux2_quo | n:{1...}, m: n, E:( n  n Prop).
(EquivRel x,y: n. x E y)  ( z:x,y: m//(x E y). z x,y: n//(x E y)) |
THM | incl_aux3_quo | n:{1...}, m: n, E:( n  n Prop).
(EquivRel i,j: n. i E j)  ( x,y:i,j: m//(i E j). x = y i,j: n//(i E j)  x = y) |
THM | incl_aux4_quo | n:{1...}, E:( n  n Prop).
(EquivRel i,j: n. i E j) 
( x:i,j: n//(i E j). x = n-1 i,j: n//(i E j)  x i,j: (n-1)//(i E j)) |
THM | incl_aux5_quo | E:(T T Prop). (EquivRel x,y:T. x E y)  ( x,y:T. x = y  x = y u,v:T//(u E v)) |
THM | incl_aux6_quo | R:(T T Prop).
(EquivRel x,y:T. x R y) 
( Q:((x,y:T//(x R y)) (x,y:T//(x R y)) Prop).
(EquivRel u,v:x,y:T//(x R y). u Q v)  (EquivRel x,y:T. x Q y)) |
THM | rest_refl_rel | n:{1...}, m: n, E:( n  n Prop). Refl( n;x,y.x E y)  Refl( m;x,y.x E y) |
THM | rest_symm_rel | n:{1...}, m: n, E:( n  n Prop). Sym x,y: n. x E y  Sym x,y: m. x E y |
THM | rest_tran_rel | n:{1...}, m: n, E:( n  n Prop). Trans x,y: n. x E y  Trans x,y: m. x E y |
THM | rest_equi_rel | n:{1...}, m: n, E:( n  n Prop). (EquivRel x,y: n. x E y)  (EquivRel x,y: m. x E y) |
THM | quotient_of_nsubn | n:{1...}, E:( n  n Prop).
(EquivRel x,y: n. x E y) & ( x,y: n. Dec(x E y))  ( m: (n+1). m ~ (i,j: n//(i E j))) |
THM | quo_of_quo | R:(T T Prop).
(EquivRel x,y:T. x R y) 
( Q:((x,y:T//(x R y)) (x,y:T//(x R y)) Prop).
(EquivRel u,v:x,y:T//(x R y). u Q v)  ((x,y:T//(x Q y)) ~ (u,v:(x,y:T//(x R y))//(u Q v)))) |
def | preima_of_rel | R_f(x,y) == (f(x)) R (f(y)) |
THM | preima_of_equiv_rel | f:(A B), R:(B B Prop). (EquivRel x,y:B. x R y)  (EquivRel x,y:A. x R_f y) |
THM | one_one_corr_refl | A ~ A |
THM | one_one_corr_symm | (A ~ B)  (B ~ A) |
THM | one_one_corr_tran | (A ~ B)  (B ~ C)  (A ~ C) |
THM | quotient_1_1_corr | f:(A B), R:(B B Prop).
Bij(A; B; f) 
(EquivRel x,y:B. x R y) 
( F:((x,y:A//(x R_f y)) (x,y:B//(x R y))). Bij(x,y:A//(x R_f y); x,y:B//(x R y); F)) |
THM | quotient_of_finite | n:{1...}, A:Type, R:(A A Prop).
( n ~ A)  (EquivRel x,y:A. x R y)  ( x,y:A. Dec(x R y))  ( m: (n+1). m ~ (x,y:A//(x R y))) |