Origin Sections AutomataTheory Doc

relation_autom

Nuprl Section: relation_autom

Selected Objects
THMincl_aux2_quon:{1...}, m:n, E:(nnProp). (EquivRel x,y:n. x E y) (z:x,y:m//(x E y). z x,y:n//(x E y))
THMincl_aux3_quon:{1...}, m:n, E:(nnProp). (EquivRel i,j:n. i E j) (x,y:i,j:m//(i E j). x = y i,j:n//(i E j) x = y)
THMincl_aux4_quon:{1...}, E:(nnProp). (EquivRel i,j:n. i E j) (x:i,j:n//(i E j). x = n-1 i,j:n//(i E j) x i,j:(n-1)//(i E j))
THMincl_aux5_quoE:(TTProp). (EquivRel x,y:T. x E y) (x,y:T. x = y x = y u,v:T//(u E v))
THMincl_aux6_quoR:(TTProp). (EquivRel x,y:T. x R y) (Q:((x,y:T//(x R y))(x,y:T//(x R y))Prop). (EquivRel u,v:x,y:T//(x R y). u Q v) (EquivRel x,y:T. x Q y))
THMrest_refl_reln:{1...}, m:n, E:(nnProp). Refl(n;x,y.x E y) Refl(m;x,y.x E y)
THMrest_symm_reln:{1...}, m:n, E:(nnProp). Sym x,y:n. x E y Sym x,y:m. x E y
THMrest_tran_reln:{1...}, m:n, E:(nnProp). Trans x,y:n. x E y Trans x,y:m. x E y
THMrest_equi_reln:{1...}, m:n, E:(nnProp). (EquivRel x,y:n. x E y) (EquivRel x,y:m. x E y)
THMquotient_of_nsubnn:{1...}, E:(nnProp). (EquivRel x,y:n. x E y) & (x,y:n. Dec(x E y)) (m:(n+1). m ~ (i,j:n//(i E j)))
THMquo_of_quoR:(TTProp). (EquivRel x,y:T. x R y) (Q:((x,y:T//(x R y))(x,y:T//(x R y))Prop). (EquivRel u,v:x,y:T//(x R y). u Q v) ((x,y:T//(x Q y)) ~ (u,v:(x,y:T//(x R y))//(u Q v))))
defpreima_of_relR_f(x,y) == (f(x)) R (f(y))
THMpreima_of_equiv_relf:(AB), R:(BBProp). (EquivRel x,y:B. x R y) (EquivRel x,y:A. x R_f y)
THMone_one_corr_reflA ~ A
THMone_one_corr_symm(A ~ B) (B ~ A)
THMone_one_corr_tran(A ~ B) (B ~ C) (A ~ C)
THMquotient_1_1_corrf:(AB), R:(BBProp). Bij(A; B; f) (EquivRel x,y:B. x R y) (F:((x,y:A//(x R_f y))(x,y:B//(x R y))). Bij(x,y:A//(x R_f y); x,y:B//(x R y); F))
THMquotient_of_finiten:{1...}, A:Type, R:(AAProp). (n ~ A) (EquivRel x,y:A. x R y) (x,y:A. Dec(x R y)) (m:(n+1). m ~ (x,y:A//(x R y)))